Structural Mechanics -II Course code: 3340601 ## 5. COURSE DETAILS | Unit | Major Learning Outcomes (in Cognitive Domain) | Topics and Sub-topics | | | | |------------------------------------|--|---|--|--|--| | | | | | | | | Unit – I
Fixed
Beam | 1a. Distinguish between determinate and indeterminate structures1b. Draw Shear Force & Bending Moment Diagram for Fixed Beams | 1.1 Different types of Determinate & Indeterminate Structures & Structural Components/Elements 1.2 Advantages of fixed beam over simply supported beam 1.3 Concept of analysis by Area Moment method 1.4 μ and μ' diagram 1.5 Numerical for SF & BM diagrams for 1.6 fixed beam with central point load &/or 1.7 UDL over Full Span | | | | | Unit – II
Slope &
Deflection | 2a. Compute deflection & slope induced in Statically Determinate Beams 2b. Draw deflection curve in different types of beams under different loads and support conditions. | 2.1 Slope & Deflection 2.2 Formulae of Slope & Deflection for Cantilever Beam subjected to Point Load at free end, point load not at free end and with UDL along full Span 2.3 Formulae of Slope & Deflection for S.S Beam subjected to Central Point Load and with UDL along full Span 2.4 Numerical problems on Slope and Deflection for 2.2 & 2.3 | | | | | Unit – III
Continuous
Beam | 3a. Calculate Shear Force & Bending Moment Diagram for Continuous Beam using Theorem of Three Moment 3b. Draw Shear Force & Bending Moment Diagram for Continuous Beam using Theorem of Three Moment 3c. Draw Shear Force & Bending Moment Diagram for Continuous Beam using Moment Diagram for Continuous Beam using Moment Distribution Method | 3.1 Statically Indeterminate Beam Like Propped Cantilever, Continuous Beam with or without Over Hang Define Free Moment & Fixed End moment diagrams 3.2 Theorem of Three Moment (Clapeyron's Theorem) 3.3 Formulae to find B.M of a continuous beam using theorem of Three Moment Method 3.4 Point of Contra-flexure & its importance 3.5 Numerical to draw S.F & B.M Diagram for two or three span continuous beams having end supports as overhang, fixed and / or hinge and subjected to Central Point Load and/ or U.D.L over full span using Theorem of Three Moment 3.6 Stiffness, flexibility, carry over Factor & Distribution Factor 3.7 Moment Distribution Method 3.8 Numerical to draw S.F & B.M Diagram of two or three span continuous beams having end supports as overhang, fixed and / or hinge and subjected to Central Point Load and/ or U.D.L over full span using Moment Distribution Method | | | | GTU/NITTR/Bhopal/13-14 Gujarat State Structural Mechanics -II Course code: 3340601 | Stuctulal Mechanics - II | | | | | | | |---|---|--|--|--|--|--| | Unit | Major Learning Outcomes
(Course Outcomes in
Cognitive Domain according
to NBA terminology) | Topics and Sub-topics | | | | | | Unit – IV
Combined Direct
& Bending
Stresses | 4a. Calculate Direct & Bending Stresses of various structural components 4b. Check stability of Retaining wall & Dam 4c. Draw stress distribution diagram in retaining wall and dams under different types of loads | 4.1. Eccentricity 4.2. Formula for combined Direct & Bending Stresses 4.3. Limit of Eccentricity 4.4. Core of section for Rectangular & Circular (Hollow & Solid) 4.5. Formulae for combined stresses on sections subjected to eccentric loads considering Uniaxial & Biaxial eccentricity 4.6. Stress distribution diagrams 4.7. Application of concept of combined stresses to find pressure at base & stability check of Retaining Wall & Rectangular & Trapezoidal Dam 4.8. Numerical for 4.6 & 4.7 | | | | | | Unit – V Principle Stresses & Principle Planes | 5a.Calculate Principal Stresses
& Principal Plane on a plane
in a Strained structural
Material | 5.1 Formulae for Normal, Tangential & Resultant Stresses due to Direct Orthogonal Stresses & Shear Stress 5.2 Numerical based on 5.1 5.3 Formulae for Principal Stresses and for Location of Principal Planes 5.4 Numerical based on 5.3 5.5 Mohr's Circle and its application for 5.1 & 5.3 5.6 Numerical based on 5.1, 5.3 Graphically | | | | | ## 6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY) | Unit | Unit Title | | Distribution of Theory Marks | | | | |-------|----------------------|----------|------------------------------|-------|-------|-------| | | | Teaching | R | U | Α | Total | | | | Hours | Level | Level | Level | Marks | | I | Fixed Beam | 06 | 01 | 02 | 04 | 07 | | II | Slope & Deflection | 04 | 01 | 02 | 04 | 07 | | III | Continuous Beam | 12 | 04 | 03 | 14 | 21 | | IV | Combined Direct & | 80 | 03 | 04 | 07 | 14 | | | Bending Stresses | | | | | | | V | Principle Stresses & | 12 | 02 | 05 | 14 | 21 | | | Principle Planes | | | | | | | Total | | 42 | 11 | 16 | 43 | 70 | Legends: R = Remember, U = Understand, A= Apply and above Level (Bloom's revised taxonomy) Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table